Abstract

We introduce several hybrid methods for global continuous optimization. They combine simulated annealing and a local proximal bundle method. Traditionally, the simplest hybrid of a global and a local solver is to call the local solver after the global one, but this does not necessarily produce good results. Besides, using efficient gradient-based local solvers implies that the hybrid can only be applied to differentiable problems. We show several ways how to integrate the local solver as a genuine part of simulated annealing to enable both efficient and reliable solution processes. When using the proximal bundle method as a local solver, it is possible to solve even nondifferentiable problems. The numerical tests show that the hybridization can improve both the efficiency and the reliability of simulated annealing.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.