Abstract

Backup storage systems often remove redundancy across backups via inline deduplication, which works by referring duplicate chunks of the latest backup to those of existing backups. However, inline deduplication degrades restore performance of the latest backup due to fragmentation, and complicates deletion of expired backups due to the sharing of data chunks. While out-of-line deduplication addresses the problems by forward-pointing existing duplicate chunks to those of the latest backup, it introduces additional I/Os of writing and removing duplicate chunks. We design and implement RevDedup , an efficient hybrid inline and out-of-line deduplication system for backup storage. It applies coarse-grained inline deduplication to remove duplicates of the latest backup, and then fine-grained out-of-line reverse deduplication to remove duplicates from older backups. Our reverse deduplication design limits the I/O overhead and prepares for efficient deletion of expired backups. Through extensive testbed experiments using synthetic and real-world datasets, we show that RevDedup can bring high performance to the backup, restore, and deletion operations, while maintaining high storage efficiency comparable to conventional inline deduplication.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.