Abstract

To overcome the titanium oxide limitations, Fe2O3- and Fe3O4-modified TiO2 (3:1) nanoparticles were synthesized by a humid and solid path, respectively. These nanoparticles were embedded in sodium alginate biopolymer to prepare beads with efficient adsorption and photocatalytic behaviors in cationic dye degradation under both UV and visible irradiations. Operating conditions were investigated such as initial methylene blue (MB) concentration and contact time to evaluate their impact on the process. The bead recycling was also scrutinized. We have come to the conclusion that Fe2O3-modified TiO2-Alg displayed superiorities, including expanded responsive wavelength range in the visible region (up to 700 nm), narrower band gap (1.79 eV), and better efficiency for MB removal in terms of adsorption capacities and photocatalytic effectiveness under both UV and visible irradiations. Furthermore, these beads can be effortlessly recovered from the reaction medium after the photocatalytic process and reused up to 5 cycles without any noteworthy decline in their initial properties.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.