Abstract

Efficient hot electron extraction is a promising approach to develop photovoltaic devices that exceed the Shockley-Queisser limit. However, experimental evidence of hot electron harvesting employing an organic-inorganic interface is still elusive. Here, we reveal the hot electron dynamics at a CuPc/MoSe2 interface using steady-state spectroscopy and transient absorption spectroscopy. A hot electron transfer efficiency of greater than 78% from MoSe2 to CuPc is observed, comparable to that achieved in quantum dot hybrid systems. The mechanism is proposed as follows: the photogenerated hot electrons in MoSe2 transfer to CuPc and form singlet charge transfer states, which subsequently transform into triplet charge transfer states assisted by the rapid intersystem crossing, inhibiting back-donation of electrons and facilitating exciton dissociation into CuPc polarons with a nanosecond lifetime. Our results demonstrate that the intersystem crossing of the hybrid electronic state at organic-inorganic interfaces may serve as a scheme to enable efficient hot electron extraction in photovoltaic devices.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.