Abstract

Solvothermal synthesis of pristine and Zn-doped NiO nanocluster electrocatalysts have been synthesized for efficient electrochemical water splitting applications. Cubic structure with lattice constant of 4.16 A° was revealed through XRD analysis. Presence of oxygen vacancy was confirmed by employing PL study. Nanosheets combined feather like nanocluster morphology was obtained for optimized electrocatalysts. Variation in optical absorption and energy band gap was observed for undoped and Zn-doped NiO electrocatalysts. Highest specific capacitance of 455.74 F/g at 5 mV/s scan rate was obtained for 10% Zn-doped NiO nanoclusters. Improved oxygen evolution was achieved for the same electrocatalysts by addressing the current density of 0.77 mA/g at 10 mV/s with lowest Tafel slope of 75 mV/decade. Higher conductivity with lower internal resistance (Rs) of 10.36 Ω was obtained for the above optimized electrocatalyst. Practically applicable stability over 12 h of 10% Zn-doped NiO nanocluster electrocatalyst was proposed for efficient electrochemical water splitting applications.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.