Abstract

Objective. Estimation of the source location within the brain from electroencephalography (EEG) and magnetoencephalography measures is a challenging task. Among the existing techniques in the field, which are known as brain imaging methods, standardized low-resolution brain electromagnetic tomography (sLORETA) is the most popular method due to its simplicity and high accuracy. However, in this work we illustrate that sLORETA is still noisy and the additive noise is causing the blurry image. The existing pre-fixed/manual thresholding process after sLORETA can partially take care of denoising. However, this ad-hoc theresholding can either remove so much of the desired data or leave much of the noise in the process. Manual correction to avoid such extreme cases can be time-consuming. The objective of this paper is to automate the denoising process in the form of adaptive thresholding. Approach. The proposed method, denoted by efficient high-resolution sLORETA (EHR-sLORETA), is based on minimizing the error between the desired denoised source and the source estimates. Main results. The approach is evaluated using synthetic EEG and real EEG data. spatial dispersion (SD), and mean square error (MSE) are used as metrics to provide the quantitative performance of the method. In addition, qualitative analysis of the method is provided for real EEG data. This proposed model demonstrates advantages over the existing methods in sense of accuracy and robustness with SD and MSE comparison. Significance. EHR-sLORETA could have a significant impact on clinical studies with source estimation task, as it improves the accuracy of source estimation and eliminates the need for manual thresholding.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call