Abstract

With the rapid development of big data and cloud computing, data management has become increasingly challenging. Over the years, a number of frameworks for data management have become available. Most of them are highly efficient, but ultimately create data silos. It becomes difficult to move and work coherently with data as new requirements emerge. A possible solution is to use an intelligent hierarchical (multi-tier) storage system (HSS). A HSS is a meta solution that consists of different storage frameworks organized as a jointly constructed storage pool. A built-in data migration policy that determines the optimal placement of the datasets in the hierarchy is essential. Placement decisions is a non-trivial task since it should be made according to the characteristics of the dataset, the tier status in a hierarchy, and access patterns. This paper presents an open-source hierarchical storage framework with a dynamic migration policy based on reinforcement learning (RL). We present a mathematical model, a software architecture, and implementations based on both simulations and a live cloud-based environment. We compare the proposed RL-based strategy to a baseline of three rule-based policies, showing that the RL-based policy achieves significantly higher efficiency and optimal data distribution in different scenarios.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call