Abstract
Onshore oil fields may contain hundreds of wells that use sophisticated and complex equipments. These equipments need regular maintenance to keep the wells at maximum productivity. When the productivity of a well decreases, a specially-equipped vehicle called a workover rig must visit this well to restore its full productivity. Given a heterogeneous fleet of workover rigs and a set of wells requiring maintenance, the workover rig routing problem (WRRP) consists of finding rig routes that minimize the total production loss of the wells over a finite horizon. The wells have different loss rates, need different services, and may not be serviced within the horizon. On the other hand, the number of available workover rigs is limited, they have different initial positions, and they do not have the same equipments. This paper presents and compares four heuristics for the WRRP: an existing variable neighborhood search heuristic, a branch-price-and-cut heuristic, an adaptive large neighborhood search heuristic, and a hybrid genetic algorithm. These heuristics are tested on practical-sized instances involving up to 300 wells, 10 rigs on a 350-period horizon. Our computational results indicate that the hybrid genetic algorithm outperforms the other heuristics on average and in most cases.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.