Abstract
Efficient heat dissipation that can minimize temperature increases in device is critical in realizing electrical injection lasers. High-thermal-conductivity diamonds are promising for overcoming heat dissipation limitations for perovskite lasers. In this study, we demonstrate a perovskite nanoplatelet laser on a diamond substrate that can efficiently dissipate heat generated during optical pumping. Tight optical confinement is also realized by introducing a thin SiO2 gap layer between nanoplatelets and the diamond substrate. The demonstrated laser features a Q factor of ∼1962, a lasing threshold of 52.19 µJ cm−2, and a low pump-density-dependent temperature sensitivity (∼0.56 ± 0.01 K cm2 µJ−1) through the incorporation of the diamond substrate. We believe our study could inspire the development of electrically driven perovskite lasers.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.