Abstract

N-glycosylation is a critical quality attribute for monoclonal antibody (mAb)-based therapeutics due to its significant impact on drug efficacy and safety. Extensive glycosylation mapping is therefore necessary for mAb drug development and quality control. We utilized a higher-energy dissociation product ions-triggered electron-transfer/higher-energy collision dissociation (HCD-pd-EThcD) approach to mapping N-glycosylation in therapeutic mAbs. Due to the improved duty cycle and targeted ability, HCD-pd-EThcD could provide extensive N-glycan identifications as well as higher quality spectra than EThcD mode. On average, ten types of N-glycan were uncovered in two different lots of trastuzumab, demonstrating a significant increment in N-glycan species compared to only four types identified by EThcD. After integrating pre-enrichment of glycopeptides, up to 16 N-glycans were recognized. Significantly, this strategy facilitated the identification of glycopeptides containing fucosylated and sialylated glycans, meanwhile enabled the recognition of different N-glycan classes (high mannose, hybrid, and complex). Further application in the glycosylation analysis of adalimumab and bevacizumab resulted in 19 and 8 N-glycans species, providing a more comprehensive insight into their glycosylation modification status. We demonstrated the benefits of an integrated strategy in characterizing various N-glycans of mAb therapeutics and offer an alternative approach for their quality control at the intact glycopeptides level.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call