Abstract

In this paper, we propose a lightweight U-net architecture neural network model based on Dark Channel Prior (DCP) for efficient haze (fog) removal with a single input. The existing DCP requires high computational complexity in its operation. These computations are challenging to accelerate, and the problem is exacerbated when dealing with high-resolution images (videos), making it very difficult to apply to general-purpose applications. Our proposed model addresses this issue by employing a two-stage neural network structure, replacing the computationally complex operations of the conventional DCP with easily accelerated convolution operations to achieve high-quality fog removal. Furthermore, our proposed model is designed with an intuitive structure using a relatively small number of parameters (2M), utilizing resources efficiently. These features demonstrate the effectiveness and efficiency of the proposed model for fog removal. The experimental results show that the proposed neural network model achieves an average Peak Signal-to-Noise Ratio (PSNR) of 26.65 dB and a Structural Similarity Index Measure (SSIM) of 0.88, indicating an improvement in the average PSNR of 11.5 dB and in SSIM of 0.22 compared to the conventional DCP. This shows that the proposed neural network achieves comparable results to CNN-based neural networks that have achieved SOTA-class performance, despite its intuitive structure with a relatively small number of parameters.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.