Abstract

Biometric security is a growing trend, as it supports the authentication of persons using confidential biometric data. Most of the transmitted data in multimedia systems are susceptible to attacks, which affect the security of these systems. Biometric systems provide sufficient protection and privacy for users. The recently-introduced cancellable biometric recognition systems have not been investigated in the presence of different types of attacks. In addition, they have not been studied on different and large biometric datasets. Another point that deserves consideration is the hardware implementation of cancellable biometric recognition systems. This paper presents a suggested hybrid cancellable biometric recognition system based on a 3D chaotic cryptosystem. The rationale behind the utilization of the 3D chaotic cryptosystem is to guarantee strong encryption of biometric templates, and hence enhance the security and privacy of users. The suggested cryptosystem adds significant permutation and diffusion to the encrypted biometric templates. We introduce some sort of attack analysis in this paper to prove the robustness of the proposed cryptosystem against attacks. In addition, a Field Programmable Gate Array (FPGA) implementation of the proposed system is introduced. The obtained results with the proposed cryptosystem are compared with those of the traditional encryption schemes, such as Double Random Phase Encoding (DRPE) to reveal superiority, and hence high recognition performance of the proposed cancellable biometric recognition system. The obtained results prove that the proposed cryptosystem enhances the security and leads to better efficiency of the cancellable biometric recognition system in the presence of different types of attacks.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call