Abstract

This paper introduces a new framework for solving quantified constraint satisfaction problems (QCSP) defined by universally quantified inequalities on continuous domains. This class of QCSPs has numerous applications in engineering and technology. We introduce a generic branch and prune algorithm to tackle these continuous CSPs with parametric constraints, where the pruning and the solution identification processes are dedicated to universally quantified inequalities. Special rules are proposed to handle the parameter domains of the constraints. The originality of our framework lies in the fact that it solves the QCSP as a non-quantified CSP where the quantifiers are handled locally, at the level of each constraint. Experiments show that our algorithm outperforms the state of the art methods based on constraint techniques.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call