Abstract
AbstractStarting from suitable zero-relation, we derive higher-order iterative methods for the simultaneous inclusion of polynomial multiple zeros in circular complex interval arithmetic. The convergence rate is increased using a family of two-point methods of the fourth order for solving nonlinear equations as a predictor. The methods are more efficient compared to existing inclusion methods for multiple zeros, based on fixed point relations. Using the concept of the R-order of convergence of mutually dependent sequences, we present the convergence analysis of the total-step and the single-step methods. The proposed self-validated methods possess a great computational efficiency since the acceleration of the convergence rate from four to seven is achieved only by a few additional calculations. To demonstrate convergence behavior of the presented methods, two numerical examples are given.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.