Abstract

Water electrolysis to produce H2 and O2 with renewable energy input has been generally viewed as an attractive route to meet future global energy demands. However, the sluggish O2 evolution reaction usually requires high overpotential and may yield reactive oxygen species (ROS) that can degrade the electrolyzer membrane and hence shorten the device lifetime. In addition, the potential gas crossover may result in an explosive H2/O2 mixture and hence safety risks. To address these issues, we herein report a general electrolysis strategy for the simultaneous H2 production and alcohol oxidative upgrading (e.g., benzyl alcohol, 4-nitrobenzyl alcohol, 4-methylbenzyl alcohol, ethanol, and 5-hydroxymethylfurfural), in which the thermodynamics of the latter is much easier than that of water oxidation. A facile and environmentally friendly template-free electrodeposition was used to obtain a 3D hierarchically porous nickel-based electrocatalyst (hp-Ni) for such an integrated electrolysis, requiring a voltage of ∼22...

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call