Abstract

A graphics processing unit (GPU)-based implementation of a space carving method for the reconstruction of the photo hull is presented. In particular, the generalized voxel coloring with item buffer approach is transferred to the GPU. The fast computation on the GPU is realized by an incrementally calculated standard deviation within the likelihood ratio test, which is applied as color consistency criterion. A fast and efficient computation of complete voxel-pixel projections is provided using volume rendering methods. This generates a speedup of the iterative carving procedure while considering all given pixel color information. Different volume rendering methods, such as texture mapping and raycasting, are examined. The termination of the voxel carving procedure is controlled through an anytime concept. The photo hull algorithm is examined for its applicability to real-world surveillance scenarios as an online reconstruction method. For this reason, a GPU-based redesign of a visual hull algorithm is provided that utilizes geometric knowledge about known static occluders of the scene in order to create a conservative and complete visual hull that includes all given objects. This visual hull approximation serves as input for the photo hull algorithm.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.