Abstract
Since many graph data are often noisy and incomplete in real applications, it has become increasingly important to retrieve graphs $g$ in the graph database $D$ that approximately match the query graph $q$ , rather than exact graph matching. In this paper, we study the problem of graph similarity search, which retrieves graphs that are similar to a given query graph under the constraint of graph edit distance. We propose a systematic method for edit-distance based similarity search problem. Specifically, we derive two lower bounds, i.e., partition-based and branch-based bounds, from different perspectives. More importantly, a hybrid lower bound incorporating both ideas of the two lower bounds is proposed, which is theoretically proved to have higher (at least not lower) pruning power than using the two lower bounds together. We also present a uniform index structure, namely u-tree, to facilitate effective pruning and efficient query processing. Extensive experiments confirm that our proposed approach outperforms the existing approaches significantly, in terms of both the pruning power and query response time.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: IEEE Transactions on Knowledge and Data Engineering
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.