Abstract
Graph component labeling, which is a subset of the general graph coloring problem, is a computationally expensive operation in many important applications and simulations. A number of data-parallel algorithmic variations to the component labeling problem are possible and we explore their use with general purpose graphical processing units (GPGPUs) and with the CUDA GPU programming language. We discuss implementation issues and performance results on CPUs and GPUs using CUDA. We evaluated our system with real-world graphs. We show how to consider different architectural features of the GPU and the host CPUs and achieve high performance.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.