Abstract
The task of inducing grammar structures has received a great deal of attention. The reasons why researchers have studied are different; to use grammar induction as the first stage in building large treebanks or to make up better language models. However, grammar induction has inherent computational complexity. To overcome it, some grammar induction algorithms add new production rules incrementally. They refine the grammar while keeping their computational complexity low. In this paper, we propose a new efficient grammar induction algorithm. Although our algorithm is similar to algorithms which learn a grammar incrementally, our algorithm uses the graphical EM algorithm instead of the Inside-Outside algorithm. We report results of learning experiments in terms of learning speeds. The results show that our algorithm learns a grammar in constant time regardless of the size of the grammar. Since our algorithm decreases syntactic ambiguities in each step, our algorithm reduces required time for learning. This constant-time learning considerably affects learning time for larger grammars. We also reports results of evaluation of criteria to choose nonterminals. Our algorithm refines a grammar based on a nonterminal in each step. Since there can be several criteria to decide which nonterminal is the best, we evaluate them by learning experiments.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Transactions of the Japanese Society for Artificial Intelligence
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.