Abstract
Accurate measurement of gradient waveform errors can often improve image quality in sequences with time varying readout and excitation waveforms. Self-encoding or offset-slice sequences are commonly used to measure gradient waveforms. However, the self-encoding method requires a long scan time, while the offset-slice method is often low precision, requiring the thickness of the excited slice to be small compared to the maximal k-space encoded by the test waveform. This work introduces a hybrid these methods, called variable-prephasing. Using a straightforward algebraic model, we demonstrate that variable-prephasing improves the precision of the waveform measurement by allowing acquisition of larger slice thicknesses. Experiments in a phantom were used to validate the theoretical predictions, showing that the precision of variable-prephasing gradient waveform measurements improves with increasing slice thickness.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.