Abstract

Maximum consensus is one of the most popular criteria for robust estimation in computer vision. Despite its widespread use, optimising the criterion is still customarily done by randomised sample-and-test techniques, which do not guarantee optimality of the result. Several globally optimal algorithms exist, but they are too slow to challenge the dominance of randomised methods. Our work aims to change this state of affairs by proposing an efficient algorithm for global maximisation of consensus. Under the framework of LP-type methods, we show how consensus maximisation for a wide variety of vision tasks can be posed as a tree search problem. This insight leads to a novel algorithm based on A* search. We propose efficient heuristic and support set updating routines that enable A* search to efficiently find globally optimal results. On common estimation problems, our algorithm is much faster than previous exact methods. Our work identifies a promising direction for globally optimal consensus maximisation.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.