Abstract
Targeted genome editing by clustered regularly interspaced short palindromic repeats (CRISPR-Cas9) raised concerns over off-target effects. The use of double-nicking strategy using paired Cas9 nickase has been developed to minimize off-target effects. However, it was reported that the efficiency of paired nickases were comparable or lower than that of either corresponding nuclease alone. Recently, we conducted a systematic comparison of the efficiencies of several paired Cas9 with their corresponding Cas9 nucleases and showed that paired D10A Cas9 nickases are sometimes more efficient than individual nucleases for gene disruption. However, sometimes the designed paired Cas9 nickases exhibited significantly lower mutation frequencies than nucleases, hampering the generation of cells containing paired Cas9 nickase-induced mutations. Here we implemented IRES peptide-conjugation of fluorescent protein to Cas9 nickase and subjected for fluorescence-activated cell sorting. The sorted cell populations are highly enriched with cells containing paired Cas9 nickase-induced mutations, by a factor of up to 40-fold as compared with the unsorted population. Furthermore, gene-disrupted single cell clones using paired nickases followed by FACS sorting strategy were generated highly efficiently, without compromising with its low off-target effects. We envision that our fluorescent protein coupled paired nickase-mediated gene disruption, facilitating efficient and highly specific genome editing in medical research.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Similar Papers
More From: Archives of pharmacal research
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.