Abstract
Direct delivery of genome-editing proteins into plant tissues could be useful in obtaining DNA-free genome-edited crops obviating the need for backcrossing to remove vector-derived DNA from the host genome as in the case of genetically modified organisms generated using DNA vector. Previously, we successfully delivered Cas9 ribonucleoprotein (RNP) into plant tissue by inserting microneedle array (MNA) physisorbed with Cas9 RNPs. Here, to enhance protein delivery and improve genome-editing efficiency, we introduced a bioactive polymer DMA/HPA/NHS modification to the MNA, which allowed strong bonding between the proteins and MNA. Compared with other modifying agents, this MNA modification resulted in better release of immobilized protein in a plant cytosol-mimicking environment. The delivery of Cas9 RNPs in Arabidopsis thaliana reporter plants was improved from 4 out of 17 leaf tissues when using unmodified MNAs to 9 out of 17 when using the polymer-modified MNAs. Further improvements in delivery efficiency can be envisaged by optimizing the polymer modification conditions, which could have significant implications for the development of more effective plant genome editing techniques.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Biochemical and Biophysical Research Communications
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.