Abstract

In this study, we used the modified CRISPR/Cas9 system to produce targeted point mutations in cauliflower. Acetolactate synthase (ALS) and Centromere-specific histone H3 variant (CENH3) genes were selected as the base-editing targets and hypocotyls of cauliflower were used as explants. For ALS gene, a C-to-T conversion in the Pro182 codon (CCT) can alter the encoded amino acid, likely resulting in herbicide resistance, and a C-to-T mutation in the Leu133 codon (CTT) in the CENH3 gene may produce a haploid inducer. Results indicated that the transformation efficiency was 1.8%–4.5% and the mutation efficiencies for the ALS and CENH3 genes were approximately 22% and 87%, respectively. The ALS mutant cauliflower showed strong herbicide resistance, with possible immediate implications for broadleaf weed control in cauliflower fields.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call