Abstract

We describe efficient techniques for a number of parties to jointly generate an RSA key. At the end of the protocol an RSA modulus N = pq is publicly known. None of the parties know the factorization of N . In addition a public encryption exponent is publicly known and each party holds a share of the private exponent that enables threshold decryption. Our protocols are efficient in computation and communication. All results are presented in the honest but curious scenario (passive adversary).

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.