Abstract

Mouse embryonic stem cells (ESCs) can generate cerebellar neurons, including Purkinje cells (PCs) and their precursor cells, in a floating culture system called serum-free culture of embryoid body-like aggregates (SFEB) treated with BMP4, Fgf8b, and Wnt3a. Here we successfully established a coculture system that induced the maturation of PCs in ESC-derived Purkinje cell (EDPC) precursors in SFEB, using as a feeder layer a cerebellum dissociation culture prepared from mice at postnatal day (P) 6-8. PC maturation was incomplete or abnormal when the adherent culture did not include feeder cells or when the feeder layer was from neonatal cerebellum. In contrast, EDPCs exhibited the morphology of mature PCs and synaptogenesis with other cerebellar neurons when grown for 4 weeks in coculture system with the postnatal cerebellar feeder. Furthermore, the electrophysiological properties of these EDPCs were compatible with those of native mature PCs in vitro, such as Na(+) or Ca(2+) spikes elicited by current injections and excitatory or inhibitory postsynaptic currents, which were assessed by whole-cell patch-clamp recordings. Thus, EDPC precursors in SFEB can mature into PCs whose properties are comparable with those of native PCs in vitro.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.