Abstract
Peripheral arterial disease (PAD) is caused by atherosclerotic plaque accumulation, which results in ischemia in lower extremity ischemia. Cell-based therapy using endothelial progenitor cells (EPCs) or endothelial cells (ECs) has been challenging due to an insufficient number and replicative senescence of primary cells isolated from patients. To overcome this limitation, we generated induced pluripotent stem cells (iPSCs) from a patient with PAD for the first time. The patient-specific iPSCs have unlimited proliferation and can be used to generate a clinically relevant number of functional ECs. Here we developed a strategy to efficiently generate high EC yields within 5days of differentiation. The generated iPSC-derived ECs from a PAD patient were phenotypically and functionally similar to the primary blood outgrowth endothelial cells (BOECs) and iPSC-ECs derived from healthy donors as evidenced by expression of EC-specific markers, capillary-like tube-forming potential, and the ability to uptake acetylated low-density lipoprotein (Ac-LDL). Our approach may provide an alternative renewable source of large-scale ECs for regenerative therapy. This study represents the first step toward the development of an autologous cell-based strategy for the treatment of PAD in the future.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.