Abstract

This article proposes an efficient algorithm for reducing matrices to generalized Hessenberg form by unitary similarity, and recommends using it as a preprocessor in a variety of applications. To illustrate its usefulness, two cases from control theory are analyzed in detail: a solution procedure for a sequence of shifted linear systems with multiple right hand sides (e.g. evaluating the transfer function of a MIMO LTI dynamical system at many points) and computation of the staircase form. The proposed algorithm for the generalized Hessenberg reduction uses two levels of aggregation of Householder reflectors, thus allowing efficient BLAS 3-based computation. Another level of aggregation is introduced when solving many shifted systems by processing the shifts in batches. Numerical experiments confirm that the proposed methods have superior efficiency.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.