Abstract

Embryonic stem (ES) cells continually proliferate and can generate large numbers of differentiated cells. Genetic manipulation of transplantable cells derived from primate ES cells offers considerable potential for development research and regenerative cell therapy. However, protocols for efficient gene transfer into primate ES-cell-derived cells have not yet been established. Spontaneously contracting areas were derived from cynomolgus monkey ES cells. Features of cardiomyocytes in the area were analyzed according to gene expression (RT-PCR), morphology (immunostaining and electron microscopy), and function (intracellular calcium transience). Beating cells were transduced using a simian immunodeficiency virus (SIV) vector expressing enhanced green fluorescence protein (EGFP), then transplanted into ischemic rat myocardium. Beating cells derived from monkey ES cells displayed gene expression, ultrastructural and functional properties of early-stage cardiomyocytes. Highly efficient (97% cardiac phenotype) and stable transduction of these ES-cell-derived cardiomyocytes was achieved using SIV vector without altering contractile function. In addition, transduced cardiomyocytes survived in the myocardium of a rat myocardial infarction model. A lentiviral vector system based on SIV represents a useful vehicle for genetic modification of cardiomyocytes derived from primate ES cells, and can extend the application of primate ES cells to gene therapy.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.