Abstract

Gene silencing by siRNA (synthetic dsRNA of 21-25 nucleotides) is a well established biological tool in gene expression studies and has a promising therapeutic potential for difficult-to-treat diseases. Five fatty acids of various chain length and oxidation state (C12:0, C18:0, C18:1, C18:2, C22:1) were conjugated to the naturally occurring polyamine, spermine, and evaluated for siRNA delivery and gene knock-down. siRNA delivery could not be related directly to gene silencing efficiency as N4,N9-dierucoyl spermine resulted in higher siRNA delivery compared to N4,N9-dioleoyl spermine. GFP silencing in HeLa cells showed that the unsaturated fatty acid amides are more efficient than saturated fatty acid amides, with N4,N9-dioleoyl spermine resulting in the most efficient gene silencing in the presence of serum. The alamarBlue cell viability assay showed that fatty acid amides of spermine have good viability (75%–85% compared to control) except N4,N9-dilauroyl spermine which resulted in low cell viability. These results prove that unsaturated fatty acid amides of spermine are efficient, non-toxic, non-viral vectors for siRNA mediated gene silencing.

Highlights

  • IntroductionSiRNA is a synthetic double-stranded (dsRNA) of 21-25 nucleotides per strand. Post-transcriptional gene silencing by siRNA is an important biological tool in functional genomics studies and has many potential therapeutic applications for difficult-to-treat diseases

  • SiRNA is a synthetic double-stranded of 21-25 nucleotides per strand

  • During the RNA induced silencing complex (RISC) loading, the passenger siRNA strand is cleaved and only the guide strand is loaded. mRNA possessing a complementary sequence to the guide strand is cleaved by the RISC. siRNA is a potential therapeutic for the treatment of many diseases such as thyroid papillary carcinoma [1] and osteoclast-mediated bone resorption [2], recently reviewed by Blagbrough and Zara [3]

Read more

Summary

Introduction

SiRNA is a synthetic double-stranded (dsRNA) of 21-25 nucleotides per strand. Post-transcriptional gene silencing by siRNA is an important biological tool in functional genomics studies and has many potential therapeutic applications for difficult-to-treat diseases. We have designed a series of symmetrical diacyl lipopolyamines in order to prepare lipoplex formulations (without any pre-preparation of liposomes) of an Alexa Fluor 647-tagged siRNA to investigate if they are suitable for non-toxic transfection of target cells, by forming nanoparticles which will efficiently enter cells for non-viral gene therapy (NVGT) either by endocytosis (a major pathway) or possibly by endocytosis in combination with fusion between siRNA lipoplexes and the plasma membrane (a minor pathway) [9]. Such formulations of lipoplexes lead to RNA knock-down in which the siRNA binding is achieved by anion titration. We provide detailed evidence for the characterization of the nanoparticles, the delivery of Alexa Fluor 647-tagged siRNA and the silencing of GFP biosynthesis, the cell viability, and we compare our results with those obtained with cationic liposomal Lipofectamine 2000 and non-liposomal TransIT TKO

Materials and general methods
Synthesis of fatty acid amides of spermine
Transfection studies of HeLa cells stably expressing GFP
Confocal microscopy cell imaging
Cell viability assay
Particle size and zeta potential measurements
Lipoplex particle size and ζ-potential
Transfection with siRNA and evaluation of delivery and knock-down
Conclusions

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.