Abstract

AbstractInterleukin-2 (IL-2) is a cytokine that induces the proliferation of certain IL-2 receptor expressing quiescent cells. Human IL-2 was fused to the amino-terminus of amphotropic murine leukemia virus (MLV) envelope glycoproteins. Retroviral vectors were pseudotyped with both the IL-2 chimeric envelope and the wild-type amphotropic MLV envelope. The chimeric IL-2 glycoproteins were incorporated on retroviral vectors and the IL-2–displaying vector particles could bind specifically to cell surface IL-2 receptors. In addition, the IL-2–displaying vectors could infect proliferating cells through amphotropic receptors irrespective of whether the cells expressed the IL-2 receptor. IL-2–displaying vector particles could also transiently stimulate the cell cycle entry and proliferation of several IL-2–dependent cell lines. Finally, retroviral vectors displaying IL-2 could efficiently transduce G0/G1-arrested cells expressing the IL-2 receptor at a 34-fold higher efficiency compared with vectors with unmodified envelopes. This new strategy, whereby C-type retroviral vector particles display a ligand that activates the cell cycle of the target cells at the time of virus entry, may represent an alternative to lentivirus-derived retroviral vectors for the infection of quiescent cells. In addition, upon infection of an heterogeneous population of nonproliferating cells, MLV-retroviral vectors that display cytokines/growth factors will allow the transgene of interest to be integrated specifically in quiescent cells expressing the corresponding cytokine/growth factor receptor.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call