Abstract
Convolutional Neural Networks (CNNs) have been incredibly effective for object detection tasks. YOLOv4 is a state-of-the-art object detection algorithm designed for embedded systems. It is based on YOLOv3 and has improved accuracy, speed, and robustness. However, deploying CNNs on embedded systems such as Field Programmable Gate Arrays (FPGAs) is difficult due to their limited resources. To address this issue, FPGA-based CNN architectures have been developed to improve the resource utilization of CNNs, resulting in improved accuracy and speed. This paper examines the use of General Matrix Multiplication Operations (GEMM) to accelerate the execution of YOLOv4 on embedded systems. It reviews the most recent GEMM implementations and evaluates their accuracy and robustness. It also discusses the challenges of deploying YOLOv4 on autonomous vehicle datasets. Finally, the paper presents a case study demonstrating the successful implementation of YOLOv4 on an Intel Arria 10 embedded system using GEMM.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.