Abstract
Voice conversion refers to the adaptation of the characteristics of a source speaker's voice to those of a target speaker. Gaussian mixture models (GMM) have been found to be efficient in the voice conversion task. The GMM parameters are estimated from a training set with the goal to minimize the mean squared error (MSE) between the transformed and target vectors. Obviously, the quality of the GMM model plays an important role in achieving better voice conversion quality. This paper presents a very efficient approach for the evaluation of GMM models directly from the model parameters without using any test data, facilitating the improvement of the transformation performance especially in the case of embedded implementations. Though the proposed approach can be used in any application that utilizes GMM based transformation, we take voice conversion as an example application throughout the paper. The proposed approach is experimented with in this context and evaluated against an MSE based evaluation method. The results show that the proposed method is in line with all subjective observations and MSE results.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.