Abstract

Electrostatic gating confines and controls the transport of electrons in integrated circuits. Magnons, the quanta of spin waves of the magnetic order, are promising alternative information carriers, but difficult to gate. Here we report that superconducting strips on top of thin magnetic films can totally reflect magnons by their diamagnetic response to the magnon stray fields. The induced large frequency shifts unidirectionally block the magnons propagating normal to the magnetization. Two superconducting gates parallel to the magnetization create a magnonic cavity. The option to gate coherent magnons adds functionalities to magnonic devices, such as reprogrammable logical devices and increased couplings to other degrees of freedom.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call