Abstract

With fast switching speeds and large interconnect trees (MCMs), the resistance and inductance of interconnect has a dominant impact on logic gate delay. In this paper, we propose a new /spl Pi/ model for distributed RC and RLC interconnects to estimate the driving point admittance at the output of a CMOS gate. Using this model we are able to compute the gate delay efficiently, within 25% of SPICE-computed delays. Our parameters depend only on total interconnect tree resistance and at the output of the gate, Previous effective load capacitance methods, applicable only for distributed RC interconnects, are based on /spl Pi/ model parameters obtained via a recursive admittance moment computation. Our model should be useful for iterative optimization of performance-driven routing or for estimation of gate delay and rise times in high-level synthesis.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.