Abstract

Poly(lactic acid) (PLA) represents one of the most promising and attractive biobased polymer for the industrial development of environmentally sustainable packaging. However, oxygen and water barrier properties of PLA based films cannot compete with those of commercially available composite multilayers. To fill this gap, we used the layer-by-layer deposition technique on commercially used PLA thin films (30 μm thick) in order to increase their barrier properties to oxygen and water vapor. Nanometric films were grown by alternating branched poly(ethylene imine) (BPEI), hydrophobic fluorinated polymer (Nafion), and montmorillonite clay (MMT) layers with the aim of obtaining low gas permeability in both dry and moist conditions as well as low water vapor permeability. Two different kinds of architectures were designed and successfully prepared, based on a 4 layer repeating unit (BPEI/MMT/BPEI/Nafion), represented here as quadlayer (QL), and on a 6 layer repeating-unit ((BPEI/Nafion)2/BPEI/MMT), hexalayer (HL...

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.