Abstract

Wide bandwidth THz pulses can be used to record the distinctive spectral fingerprints related to the vibrational or rotational modes of polycrystalline biomolecules, and can be used to resolve the time-dependent dynamics of such systems. Waveguides, owing to their tight spatial confinement of the electromagnetic fields and the longer interaction distance, are promising platforms with which to study small volumes of such systems. The efficient input of sub-ps THz pulses into waveguides is challenging owing to the wide bandwidth of the THz signal. Here, we propose a sensing chip comprised of a pair of back-to-back Vivaldi antennas feeding into, and out from, a 90° bent slotline waveguide to overcome this problem. The effective operating bandwidth of the sensing chip ranges from 0.2 to 1.15 THz, and the free-space to on-chip coupling efficiency is as high as 51% at 0.44 THz. Over the entire band, the THz signal is ∼42 dB above the noise level at room temperature, with a peak of ∼73 dB above the noise. In order to demonstrate the use of the chip, we have measured the characteristic fingerprint of α-lactose monohydrate, and its sharp absorption peak at ∼0.53 THz was successfully observed, demonstrating the promise of our technique. The chip has the merits of efficient in-plane coupling, ultra-wide bandwidth, ease-of-integration, and simple fabrication. It has the potential for large-scale manufacture, and can be a strong candidate for integration into other THz light-matter interaction platforms.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.