Abstract
Nanoelectromechanical (NEM) relays are promising candidates for programmable routing in Field-Programmable-Gate Arrays (FPGAs). This is due to their zero leakage and potentially low on-resistance. Moreover, NEM relays can be fabricated using a low-temperature process and, hence, may be monolithically integrated on top of CMOS circuits. Hysteresis characteristics of NEM relays can be utilized for designing programmable routing switches in FPGAs without requiring corresponding routing SRAM cells. Our simulation results demonstrate that the use of NEM relays for programmable routing in FPGAs can simultaneously provide 43.6% footprint area reduction, 37% leakage power reduction, and up to 28% critical path delay reduction compared to traditional SRAM-based CMOS FPGAs at the 22nm technology node.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.