Abstract

We present an area efficient method and field programmable gate array (FPGA) realization for two common operations in robotics, namely, the following: (1) rotating a vector in 2D and (2) aligning a vector in the plane with a specific axis. It is based on a new coordinate rotation digital computer (CORDIC) algorithm that is designed to work with a small set of elementary angles. Unlike conventional CORDIC, the proposed algorithm does not require a ROM and a full-fledged barrel shifter. The proposed CORDIC algorithm is used to design hardware efficient solutions for two mobile robotic tasks in an indoor environment without employing division and floating-point calculations. Experiments with a sole low end FPGA based robot in static as well as dynamic environments validate the power of the approach.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.