Abstract

Binarized Neural Networks (BNN) has shown a capability of performing various classification tasks while taking advantage of computational simplicity and memory saving. The problem with BNN, however, is a low accuracy on large convolutional neural networks (CNN). Local Binary Convolutional Neural Network (LBCNN) compensates accuracy loss of BNN by using standard convolutional layer together with binary convolutional layer and can achieve as high accuracy as standard AlexNet CNN. For the first time we propose FPGA hardware design architecture of LBCNN and address its unique challenges. We present performance and resource usage predictor along with design space exploration framework. Our architecture on LBCNN AlexNet shows 76.6% higher performance in terms of GOPS, 2.6X and 2.7X higher performance density in terms of GOPS/Slice, and GOPS/DSP compared to previous FPGA implementation of standard AlexNet CNN.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call