Abstract

<p>The one-dimensional nonlinear Schrodinger equation (NLSE) serves as a universal model of nonlinear wave propagation appearing in different areas of physics. In particular it describes weakly nonlinear wave trains on the surface of deep water and captures up to certain extent the phenomenon of rogue waves formation. The NLSE can be completely integrated using the inverse scattering transform method that allows transformation of the wave field to the so-called scattering data representing a nonlinear analogue of conventional Fourier harmonics. The scattering data for the NLSE can be calculated by solving an auxiliary linear system with the wave field playing the role of potential – the so-called Zakharov-Shabat problem. Here we present a novel efficient approach for numerical computation of scattering data for spatially periodic nonlinear wave fields governed by focusing version of the NLSE. The developed algorithm is based on Fourier-collocation method and provides one an access to full scattering data, that is main eigenvalue spectrum (eigenvalue bands and gaps) and auxiliary spectrum (specific phase parameters of the nonlinear harmonics) of Zakharov-Shabat problem. We verify the developed algorithm using a simple analytic plane wave solution and then demonstrate its efficiency with various examples of large complex nonlinear wave fields exhibiting intricate structure of bands and gaps. Special attention is paid to the case when the wave field is strongly nonlinear and contains solitons which correspond to narrow gaps in the eigenvalue spectrum, see e.g. [1], when numerical computations may become unstable [2]. Finally we discuss applications of the developed approach for analysis of numerical and experimental nonlinear wave fields data.</p><p>The work was supported by Russian Science Foundation grant No. 20-71-00022.</p><p>[1] A. A. Gelash and D. S. Agafontsev, Physical Review E 98, 042210 (2018).</p><p>[2] A. Gelash and R. Mullyadzhanov, Physical Review E 101, 052206 (2020).</p>

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.