Abstract

Four-component Dirac-Hartree-Fock is an accurate mean-field method for treating molecular systems where relativistic effects are important. However, the computational cost and complexity of the two-electron interaction make this method less common, even though we can consider the Dirac-Hartree-Fock Hamiltonian the "ground truth" of the electronic structure, barring explicit quantum electrodynamical effects. Being able to calculate these effects is then vital to the design of lower scaling methods for accurate predictions in computational spectroscopy and properties of heavy element complexes that must include relativistic effects for even qualitative accuracy. In this work, we present a Pauli quaternion formalism of maximal component and spin separation for computing the Dirac-Coulomb-Gaunt Hartree-Fock ground state, with a minimal floating point operation count algorithm. This approach also allows one to explicitly separate different spin physics from the two-body interactions, such as spin-free, spin-orbit, and spin-spin contributions. Additionally, we use this formalism to examine relativistic trends in the periodic table and analyze the basis set dependence of atomic gold and gold dimer systems.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.