Abstract

The present paper proposes new approaches for recommendation tasks based on one-class support vector machines (1-SVMs) with graph kernels generated from a Laplacian matrix. We introduce new formulations for the 1-SVM that can manipulate graph kernels quite efficiently. We demonstrate that the proposed formulations fully utilize the sparse structure of the Laplacian matrix, which enables the proposed approaches to be applied to recommendation tasks having a large number of customers and products in practical computational times. Results of various numericalexperiments demonstrating the high performance of the proposed approaches are presented.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.