Abstract

The efficient, general-purpose implementations of the active-space electron-attached (EA) and ionized (IP) equation-of-motion coupled-cluster (EOMCC) methods including up to 3p-2h and 3h-2p excitations, called EA-EOMCCSDt and IP-EOMCCSDt, respectively, are discussed. The details of the algorithm that enables one to achieve a high degree of code vectorization for the active-space methods and the factorized forms of the EA- and IP-EOMCCSDt equations that maximize the benefits of using active orbitals in the process of selecting the dominant 3p-2h and 3h-2p excitations are presented. The results of benchmark calculations for the low-lying doublet and quartet states of the CH and SH radicals reveal that the active-space EA-EOMCCSDt and IP-EOMCCSDt methods are capable of producing results for the electronic excitations in open-shell systems that match the high accuracy of EA- and IP-EOMCC calculations with a full treatment of 3p-2h and 3h-2p excitations, even when the excited states of interest display a manifestly multideterminantal nature, with the costs that can be on the same order of those characterizing the basic EOMCC singles and doubles approach.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.