Abstract

Gaussian process (GP) emulator has been used as a surrogate model for predicting force field and molecular potential, to overcome the computational bottleneck of ab initio molecular dynamics simulation. Integrating both atomic force and energy in predictions was found to be more accurate than using energy alone, yet it requires O((NM)3) computational operations for computing the likelihood function and making predictions, where N is the number of atoms and M is the number of simulated configurations in the training sample due to the inversion of a large covariance matrix. The high computational cost limits its applications to the simulation of small molecules. The computational challenge of using both gradient information and function values in GPs was recently noticed in machine learning communities, whereas conventional approximation methods may not work well. Here, we introduce a new approach, the atomized force field model, that integrates both force and energy in the emulator with many fewer computational operations. The drastic reduction in computation is achieved by utilizing the naturally sparse covariance structure that satisfies the constraints of the energy conservation and permutation symmetry of atoms. The efficient machine learning algorithm extends the limits of its applications on larger molecules under the same computational budget, with nearly no loss of predictive accuracy. Furthermore, our approach contains an uncertainty assessment of predictions of atomic forces and energies, useful for developing a sequential design over the chemical input space.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.