Abstract

Background: More than 260 million people worldwide are affected by excess fluoride (F- > 1.5 mg/L) in their drinking water. Fluorosis of the teeth and skeleton, among other health issues, is caused by it. Objective: The aim of this study is to evaluate the fluoride removal from contaminated water using graphene-based new adsorbent material. Method: Graphene (G) was prepared by a facile liquid-phase exfoliation method. CeO2 nanoparticles (NPs) were synthesized by the co-precipitation method. G was treated with CeO2 NPs in a probe sonicator to generate G/Ce material in solution. Finally, the impregnation evaporation process synthesized the G/Ce supported on activated carbon composite (G/Ce/AC). Results: FE-SEM analysis shows that the crumpling and scrolling sheets of G, the nanosized spherical shape of CeO2 NPs and a thick layer of nano-sized spherical particles has built up on the surface of graphene in G/Ce/AC composite. After conversion to G/Ce/AC Composite, the specific surface area of graphene was increased from 3.08 to 485.3621 m2/g. The adsorption of fluoride on G/Ce/AC was investigated using batch systems (effects of pH, contact time, adsorbent dosage and the initial fluoride concentration), adsorption isotherm and kinetic studies. The pseudo-second order was the one that best described the kinetic data, while the Langmuir isotherm best described the equilibrium data with a maximum adsorption capacity equal to 27.9 mg/g. Conclusion: Therefore, the results show that the G/Ce/AC composite was well synthesized and has excellent fluoride adsorption capacity compared to other materials already evaluated for this purpose.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.