Abstract
Upscaling pore-scale processes into macroscopic quantities such as hydrodynamic dispersion is still not a straightforward matter for porous media with complex pore space geometries. Recently it has become possible to obtain very realistic 3D geometries for the pore system of real rocks using either numerical reconstruction or micro-CT measurements. In this work, we present a finite element–finite volume simulation method for modeling single-phase fluid flow and solute transport in experimentally obtained 3D pore geometries. Algebraic multigrid techniques and parallelization allow us to solve the Stokes and advection–diffusion equations on large meshes with several millions of elements. We apply this method in a proof-of-concept study of a digitized Fontainebleau sandstone sample. We use the calculated velocity to simulate pore-scale solute transport and diffusion. From this, we are able to calculate the a priori emergent macroscopic hydrodynamic dispersion coefficient of the porous medium for a given molecular diffusion D m of the solute species. By performing this calculation at a range of flow rates, we can correctly predict all of the observed flow regimes from diffusion dominated to convection dominated.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.