Abstract

Generation of efficient tool paths is essential for the cost-effective machining of parts with complex free-form surfaces. A new method to generate constant scallop height tool paths for the efficient five-axis machining of free-form surfaces using flat-end mills is presented. The tool orientations along the tool paths are optimized to maximize material removal and avoid local gouging. The distances between adjacent tool paths are further optimized according to the specified scallop height constraint to maximize machining efficiency. The constant scallop height tool paths are generated successively across the design surface from the immediate previous tool path and its corresponding scallop curve. The scallop surface, an offset surface of the three-dimensional design surface based on the specified scallop height, is used to establish accurately the scallop curve with the constant scallop height. The present method was implemented and validated through the five-axis machining of a typical free-form surface. The results showed that the conventional isoparametric tool paths were over 36% longer in the total tool path length and less efficient than the constant scallop height tool paths generated by the present method.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call