Abstract

The discharge of organic pollutants threatens the environment and health and is also a waste of organic energy. Here, the reduction state Cu (RSC) species-doped carbon-nitrogen-oxygen polymer (RSC-CNOP) is synthesized from high-temperature polymerization of a Cu-polyimide precursor, which is used as a Fenton-like catalyst and exhibits excellent performance for pollutant degradation, accompanied by the utilization of the electron energy of the pollutants. Experiments and theoretical calculations reveal the promotion mechanism. The formed Cu(RSC)-O-C(π) electron-transfer bridges in RSC-CNOP induce the bidirectional electron transfers from RSC to O and from C(π) to O (RSC → O ← π), forming the polarized reaction micro-areas (reinforced electron-rich O microcenters and electron-poor C(π) microcenters). The free electrons in electron-rich centers of RSC-CNOP are as many as ∼8 times that of the pure CNOP sample from the electron paramagnetic resonance measurement. Pollutants are oxidized by supplying electrons to electron-poor microcenters, and H2O2 can be selectively reduced to •OH (also destruct pollutants) in the electron-rich microcenter over RSC-CNOP. This work reveals that the energy and electrons of pollutants can be efficiently utilized in the Fenton-like system through constructing and reinforcing the polarized dual reaction microcenters.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.