Abstract
There is a relatively low efficiency of Fe(III)/Fe(II) conversion cycle and H2O2 decomposition (<30%) in conventional Fenton process, which further results in a low production efficiency of OH and seriously restricts the application of Fenton. Herein, we report that the commercial MoO2 can be used as the cocatalyst in Fenton process to dramatically accelerate the oxidation of Lissamine rhodamine B (L-RhB), where the efficiency of Fe(III)/Fe(II) cycling is greatly enhanced in the Fenton reaction meanwhile. And the L-RhB solution could be degraded nearly 100% in 1 min in the MoO2 cocatalytic Fenton system under the optimal reaction condition, which is apparently better than that of the conventional Fenton system (∼50%). Different from the conventional Fenton reaction where the OH plays an important role in the oxidation process, it shows that 1O2 contributes most in the MoO2 cocatalytic Fenton reaction. However, it is found that the exposed Mo4+ active sites on the surface of MoO2 powders can greatly promote the rate-limiting step of Fe3+/Fe2+ cycle conversion, thus minimizing the dosage of H2O2 (0.400 mmol/L) and Fe2+ (0.105 mmol/L). Interestingly, the MoO2 cocatalytic Fenton system also exhibits a good ability for reducing Cr(VI) ions, where the reduction ability for Cr(VI) reaches almost 100% within 2 h. In short, this work shows a new discovery for MoO2 cocatalytic advanced oxidation processes (AOPs), which devotes a lot to the practical water remediation application.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.